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SUPPLEMENTARY MATERIAL FOR “RNA-SEQ
GENE EXPRESSION ESTIMATION WITH READ
MAPPING UNCERTAINTY”
Details of the EM algorithm for our RNA-Seq model
We use the EM algorithm to find the the values of θ that maximize
the observed data likelihood:

P (r|θ) =

NY
n=1

MX
i=0

θiP (rn|Gn = i),

where
P (rn|Gn = i) =

1

`i

X
j

P (rn|Znij = 1),

and where we have assumed a uniform RSPD and a strand-specific
protocol for ease of presentation (our experiments in this paper use
a non-strand-specific model, for which the equations are similar).

Key to the EM algorithm is the expected value of the complete
data log likelihood function, given current values for the parameters.
The complete data log likelihood may be written as

logP (r, z|θ) =
X
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znij log
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The Q function for the EM algorithm is thus

Q(θ|θ(t)) = EZ|r,θ(t) [logP (r, Z|θ)]

=
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During the E-step we calculate the expected values of the Znij
variables:

EZ|r,θ(t) [Znij ] = P (Znij = 1|r, θ(t))

=
(θ

(t)
i /`i)P (rn|Znij = 1)P
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.

Finally, the M-step has us maximize Q(θ|θ(t)) with respect to θ:

θ
(t+1)
i =

EZ|r,θ(t) [Ci]

N
,

where
Ci =

X
n,i,j

Znij .

The EM algorithm consists of alternating between the E and M steps
until convergence. We start the algorithm with θ(0) corresponding
to uniform τ isoform expression levels and stop when the log
likelihood is no longer increasing significantly.

When a non-uniform RSPD is used, we also estimate the RSPD
parameters during the EM algorithm. The parameters of the RSPD,
φ1 . . . φB , are initially set to a uniform distribution, and are updated
during the M-step by

φ
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b =

EZ|r,θ(t),φ(t) [C′b]P
b′ EZ|r,θ(t),φ(t) [C′b′ ]

,
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and u(x) = x if x ≥ 0 and u(x) = 0 otherwise.

Proof of concavity of likelihood function
We prove that the likelihood function for our model is concave with
respect to θ and thus that the EM algorithm is guaranteed to reach
a global maximum in the parameter space of θ. Our proof is similar
to that given in (Jiang and Wong, 2009) for the concavity of their
likelihood function. Our log likelihood function is

logP (r|θ) =

NX
n=1

log
X
i

θiP (rn|Gn = i).

Because the sum of concave functions is also a concave function,
we need only prove that

f(θ) = log
X
i

θiP (rn|Gn = i)

is concave. Let H(θ) be the Hessian matrix for f(θ):

Hjk(θ) =
∂2 log

P
i θiP (rn|Gn = i)

∂θj∂θk

= −P (rn|Gn = j)P (rn|Gn = k)

(
P
i θiP (rn| Gn = i))2

.

We may express H(θ) as −c(θ)x′x, where

c(θ) =
1

(
P
i θiP (rn|Gn = i))2

x = [P (rn|Gn = 0), . . . , P (rn|Gn = m)].

Noting that c(θ) > 0, it follows that ∀y = [y0, . . . , ym],

yH(θ)y′ = y(−c(θ)x′x)y′

= −c(θ)(yx′)(yx′)′

= −c(θ)(yx′)2

≤ 0.

Therefore, H(θ) is negative semidefinite and both f(θ) and P (r|θ)
are concave.

Treatment of repetitive read sequences
In practice, we encounter a significant number of repetitive reads,
which have many alignments to the reference sequences. Because
of the large amount of uncertainty in their mapping, these reads
contribute little information regarding expression levels, yet require
significant additional computation. Thus, to reduce compute time,
we filter out all alignments for reads that map to T or more genes
(T = 100, typically). To compensate, we mark all potential read
start positions that align to these repetitive reads. These positions
are not allowed to generate reads in the model, effectively reducing
the length of each isoform (although we do not filter other non-
repetitive reads that start at these positions). We then correct for
this heuristic by boosting the estimated expression levels of each
isoform according to the ratio of its true length, `i, and its reduced
length `′i. This adjustment can be thought of as a generalization of
the “mappability” correction used in (Morin et al., 2008), which
corresponds to setting T = 1. If the initial estimate (via EM) of the
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fraction of reads mapping to isoform i is θ′i, we estimate the true
fraction, θi, as:

θi =
`i
`′i
θ′i.

The noise fraction, θ0, is then computed as

θ0 = 1−
X
i

`i
`′i
θ′i.
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(a)

(b)

Fig. 1: Gene expression estimates (y-axis) vs. sample values (x-axis) for the simulated mouse liver RNA-Seq data set. Comparisons are given
for both (a) ν and (b) τ . Values on the axes are given in terms of NPM (ν) or TPM (τ ).

(a)

(b)

Fig. 2: Gene expression estimates (y-axis) vs. sample values (x-axis) for the simulated maize RNA-Seq data set. Comparisons are given for
both (a) ν and (b) τ . Values on the axes are given in terms of NPM (ν) or TPM (τ ).

3



RNA-Seq with read mapping uncertainty (Supplementary Material)

● ●
● ●

● ●

● ●
● ●

● ●

●
●

● ●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
03

5
0.

04
5

0.
05

5

Fractional position along transcript

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

Fig. 3: The RSPD estimated by our method from all reads in the mouse liver data set. This RSPD indicates a 3’ bias in the protocol used for
this data set. The single data point at the 3’ end is lower most likely because it is difficult to map short reads that extend significantly into a
poly(A) tail.

Sample gene expression in NPM (ν) or TPM (τ )
[1, 10) [10, 102) [102, 103) [103, 104) [104, 105) All

(A)

ν

N 5242 5720 1116 115 6 12199

MPE
em uniform 2.2 0.9 0.5 0.3 0.2 1.1

em rspd 2.2 0.8 0.4 0.2 0.2 1.0

EF
em uniform 18.6 1.7 0.6 0.9 0.0 8.9

em rspd 18.7 1.8 0.8 0.9 0.0 9.0

τ

N 5976 4584 984 114 14 11672

MPE
em uniform 2.4 1.1 0.6 0.5 0.7 1.5

em rspd 2.3 1.0 0.4 0.3 0.3 1.3

EF
em uniform 25.4 5.8 1.1 0.9 0.0 15.4

em rspd 24.7 5.1 1.2 0.9 0.0 14.8

(B)

ν

N 8237 7165 1234 129 10 16775

MPE
em uniform 3.4 1.4 0.7 0.6 0.8 2.1

em rspd 3.3 1.3 0.6 0.4 0.5 1.9

EF
em uniform 40.1 19.1 10.0 6.2 10.0 28.7

em rspd 39.6 17.6 5.5 2.3 0.0 27.4

τ

N 8596 6401 1102 124 9 16232

MPE
em uniform 3.5 1.6 0.9 0.7 1.1 2.3

em rspd 3.3 1.4 0.7 0.4 0.7 2.1

EF
em uniform 40.8 19.2 9.6 3.2 11.1 29.8

em rspd 40.1 17.3 5.0 1.6 0.0 28.4
Table 1. Error of the em uniform and em rspd estimated gene expression levels with respect to sample expression values from simulations of mouse (A)
and maize (B) RNA-Seq data with a non-uniform RSPD learned from mouse liver data. Bold values indicate that the estimates are significantly (p < 0.05)
more accurate, as assessed by a paired Wilcoxon signed rank test.
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Fig. 4: A synthetic extreme 3’ biased RSPD used for testing the benefits of estimating expression with a non-uniform RSPD model.

Sample gene expression in NPM (ν) or TPM (τ )
[1, 10) [10, 102) [102, 103) [103, 104) [104, 105) All

(A)

ν

N 5518 5286 1036 112 9 11961

MPE
em uniform 2.7 1.1 0.6 0.5 0.6 1.5

em rspd 2.6 1.0 0.5 0.3 0.4 1.3

EF
em uniform 27.1 5.0 2.8 2.7 11.1 15.0

em rspd 24.3 3.0 0.8 0.9 0.0 12.6

τ

N 6274 4026 887 111 15 11313

MPE
em uniform 3.9 2.3 1.8 1.5 2.1 2.9

em rspd 2.7 1.2 0.7 0.5 0.6 1.7

EF
em uniform 42.2 26.3 13.3 7.2 13.3 33.9

em rspd 30.8 7.5 1.0 1.8 0.0 19.9

(B)

ν

N 8957 4732 995 120 14 14818

MPE
em uniform 4.6 1.6 0.7 0.5 0.3 3.0

em rspd 4.0 1.3 0.6 0.5 0.6 2.5

EF
em uniform 47.8 26.8 17.0 12.5 21.4 38.7

em rspd 43.3 17.9 10.1 5.8 21.4 32.6

τ

N 9227 4941 1040 113 12 15333

MPE
em uniform 6.6 3.1 2.3 2.3 1.5 4.6

em rspd 5.0 1.7 0.7 0.6 0.6 3.0

EF
em uniform 56.1 37.6 27.1 23.9 16.7 47.9

em rspd 50.2 21.1 9.2 7.1 16.7 37.7
Table 2. Error of the em uniform and em rspd estimated gene expression levels with respect to sample expression values from simulations of mouse (A)
and maize (B) RNA-Seq data with a synthetic 3’-biased RSPD. Bold values indicate that the estimates are significantly (p < 0.05) more accurate, as assessed
by a paired Wilcoxon signed rank test.
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Fig. 5: Standard error vs. mean gene expression level estimate for genes with expression greater than 1 NPM (top) or 1 TPM (bottom)
from the mouse liver data. Standard errors were computed by running the EM algorithm on 1000 non-parametric bootstrap samples. For a
multinomial model, we expect a linear relationship between the variance and mean of a ν estimate, which presents itself as a line in log-log
coordinates of a standard error vs. mean plot. The standard errors for genes with the same mean τ estimate are more variable because of
varying gene length.
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Fig. 6: Distribution of the number of genes and isoforms mapped to by the reads in the mouse liver and maize simulations.
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